Gène

Un gène est une séquence d'acide désoxyribonucléique qui spécifie la synthèse d'une chaîne de polypeptide ou d'un acide ribonucléique fonctionnel.



Catégories :

Gène

Recherche sur Google Images :


Source image : www-dsv.cea.fr
Cette image est un résultat de recherche de Google Image. Elle est peut-être réduite par rapport à l'originale et/ou protégée par des droits d'auteur.

Définitions :

  • Séquence d'un brin d'ADN, Le gène est localisé à un lieu bien précis du chromosome (locus) et porte une information génétique qui controle un caractère héréditaire. (source : gutt-folie)
  • Unité définie, située sur un chromosome et responsable de la production des caractères héréditaires.... (source : minefi.gouv)
Représentation simplifiée d'un gène d'eucaryote.

Un gène est une séquence d'acide désoxyribonucléique (ADN) qui spécifie la synthèse d'une chaîne de polypeptide ou d'un acide ribonucléique (ARN) fonctionnel. On dit mais aussi l'ADN est le support de l'information génétique car il est comme un ouvrage, un plan architectural du vivant, qui oriente, qui dicte la construction des principaux constituants et bâtisseurs cellulaires que sont les protéines (chaîne (s) polypeptidique (s) ), les ARN fonctionnels (ARN ribosomiques, ARN de transferts et autres) et les enzymes (chaîne (s) de polypeptide (s) associée (s) ou non à des ARN). Les unités d'informations génétiques, qui forment les gènes, sont transmises de cellules à cellules au cours du processus de la mitose après duplication du matériel génétique (chromosome (s) ). La "reproduction" peut nécessiter une sexualité ou non selon les espèces mises en jeu. La totalité du matériel génétique d'une espèce forme le génome et ainsi de suite se déclinent le protéome pour la totalité des protéines exprimées (on dit aussi codées par les gènes), le (voir ARN messager)...

Le génotype d'un individu (qu'il soit animal, végétal, bactérien ou autre) est la somme des gènes qu'il possède. Le phénotype, quant à lui, correspond à la somme des caractères morphologiques, physiologiques ou comportementaux qui sont identifiables de l'extérieur. Ainsi, deux individus peuvent avoir le même génotype mais pas nécessairement le même phénotype (et réciproquement), suivant les conditions d'expressions des gènes qui confèrent un aspect identifiable, discernable.

Historique

Aux premiers temps de la génétique, le support moléculaire de l'information était complètement inconnu, mais des expérimentations, comme les travaux du moine Gregor Mendel sur le pois ou de Thomas H. Morgan sur les mouches drosophiles, purent mettre en évidence l'existence de facteurs biologiques de l'hérédité. La transmission de ces facteurs, dans le cas de caractères simples, pouvait s'expliquer par l'existence d'entités d'information génétique discrètes : les gènes.

Plus tard, les progrès de la microscopie optique puis des techniques de biologie moléculaire ont permis la localisation de ces gènes au sein des noyaux des cellules, le support de l'information génétique étant de longues molécules d'acide désoxyribonucléique (ADN) nommées chromosomes.

Origine du mot : il fut proposé par le biologiste danois Wilhelm Johannsen en 1909, en même temps que les termes de «génotype» et de «phénotype». Le terme résultait d'une contraction de l'expression de «pangène» forgée vingt ans plus tôt par Hugo De Vries. Pour De Vries, les «pangènes» étaient des organites intracellulaires, présents dans l'ensemble des cellules. Johannsen, quand il contracta le mot «pangène» en celui de «gène», dégagea la notion de toute interprétation morphologique spécifique, et proposa de le définir de manière purement opérationnelle comparé à la combinatoire mendélienne : «Il faut traiter le gène comme une unité de comptage ou de calcul. Nous n'avons aucunement le droit de définir le gène comme une structure morphologique, au sens des “gemmules” de Darwin, des “biophores”, des “déterminants” ou de toute autre sorte de concept morphologiques».

Définition

Aujourd'hui, un gène est défini comme un enchaînement de désoxyribonucléotides (dit aussi séquence), c'est-à-dire comme une portion d'acide désoxyribonucléique (séquence d'ADN), conçu pour être transcrit en acide ribonucléique (ARN), si c'est le cas la séquence est dite «codante». La majorité du temps, un gène débute par une séquence de nucléotides nommée promoteur, dont le rôle est de permettre l'initiation mais en particulier la régulation (tous les gènes ne sont pas exprimés dans l'ensemble des cellules) de la de l'ADN en ARN, et se termine par une séquence terminatrice, qui marque la fin de la transcription. La molécule d'ARN ainsi produite peut soit être traduite en protéine (elle est dans ce cas nommée ARN messager), soit être directement fonctionnelle (c'est le cas pour les ARN ribosomaux ou les ARN de transfert). Il y a à peu près 13 000 gènes dans l'ADN des cellules d'une drosophile et 21000 gènes chez l'Homme. [1][2][3][4]

Expression des gènes

Lorsque un gène est conçu pour être transcrit en ARN messager, il contient l'information indispensable à la synthèse de protéines. Chez les eucaryotes, un gène est constitué d'une alternance de séquences codantes, nommées exons, et de séquences non codantes, les introns, qui seront éliminées de l'ARN messager lors du processus d'épissage, avant la traduction en protéine. L'information génétique s'exprime par triplets de nucléotides (appelés codons), à chaque codon correspond un acide aminé. Certains codons nommés "codons STOP" n'ont pas de correspondance en acide aminé et définissent l'arrêt de la traduction de l'ARN en polypeptide. Une protéine n'est néanmoins pas simplement un enchaînement d'acides aminés et sa composition finale dépend d'autres facteurs environnementaux, c'est pourquoi à un gène ne correspond pas obligatoirement une seule protéine. Qui plus est , le processus d'épissage des introns permet aussi de supprimer de façon conditionnelle certains exons de l'ARN, donnant la possibilité ainsi à partir d'un unique gène de produire plusieurs protéines différentes. On parle alors d'épissage alternatif. Ce phénomène originellement décrit pour un nombre restreint de gènes semble concerner un nombre croissant de gènes. Actuellement, on estime que l'épissage alternatif sert à produire en moyenne trois ARN différents par gène, ce qui permet chez l'humain de produire à partir de ses 20 000 à 25 000 gènes, 100 000 protéines différentes :

La plupart des cellules d'un organisme possèdent la totalité des gènes. La totalité des gènes exprimés dans une cellule surtout, et par conséquent des protéines qui seront présentes dans cette cellule, dépend de chemins de régulation complexes mis en place au cours du développement de l'individu. Certains caractères simples sont déterminés par un seul gène (comme le groupe sanguin chez l'homme ou comme la couleur des yeux chez la drosophile). Cependant, dans la majorité des cas, un caractère observable dépend de nombreux gènes et peut-être de l'interaction avec l'environnement (forme du visage, poids du corps).

Si les gènes sont les principaux responsables des variations entre individus, ils ne sont pas l'unique support d'information dans un organisme. Ainsi, on considère que, dans le cas de la plupart d'organismes, une bonne partie de l'ADN n'est pas codante (uniquement 3% est codante chez l'homme), le reste (l'ADN non codant) ayant des fonctions toujours mal connues. Cet ADN non codant, aussi nommé ADN intergénique, est de plus en plus étudié, et semble être impliqué dans la structure de la chromatine. Surtout, les dernières recherches ont montré un rôle essentiel de ces régions dans la régulation de l'expression des gènes par modification de l'état de la chromatine sur de grandes régions chromosomiques.

Les segments cis-régulateurs chez les eucaryotes

L'ADN humain se compose de 1, 5 % de séquences codantes pour les gènes qui sont activés par des segments cis-régulateurs activateurs localisés à proximité dans les 98, 5 % d'ADN non codants [5]. 99 % de nos gènes sont communs avec la souris. 5000 de nos segments cis-régulateurs sont communs avec les requins. Les génomes de 20 espèces particulièrement différentes (mouches, poissons, oiseaux, rongeurs, singes, hommes) se composent en moyenne de 20000 gènes et montrent de particulièrement grandes similitudes entre leurs gènes et entre leurs segments régulateurs. Les variations de caractères génétiques sont plus fréquemment dues aux mutations d'activateurs qu'aux mutations de gènes.

Dans les tissus, des protéines reconnaissent et se lient aux segments cis-régulateurs et activent les gènes [5]. Le complexe protéique qui se forme alors active l'enzyme polymérase et enclenche la transcription du gène. La plus longue distance observée est de 4500 paires de bases entre un gène et un segment régulateur [5]. Certains gènes sont activés indépendamment dans plusieurs tissus par des segments différents. Ces gènes sont toujours plus stables car soumis à des contraintes organiques plus nombreuses [5].

Pour étudier les segments cis-régulateurs on en génère un et on le lie à un gène dont l'effet est facile à observer. Puis on l'introduit dans un embryon unicellulaire [5]. Si on observe l'effet c'est que le segment est régulateur et l'observation indique sa position dans l'organisme en développement.

Gène égoïste

Dans son ouvrage Le gène égoïste, Richard Dawkins expose en 1976 une théorie donnant au gène le rôle d'unité sur laquelle agit la sélection naturelle (un rôle généralement dévolu à l'individu). Les individus n'auraient d'autre intérêt que d'assurer la transmission des gènes qu'ils portent (une idée qui donne son titre au livre Les avatars du gène de Pierre-Henri Gouyon, Jean-Pierre Henry et Jacques Arnould). Il peut exister des conflits entre le niveau du gène et celui de l'individu : les gènes portés par la fraction du génome transmise par la voie femelle ont intérêt à produire plus de descendant femelles ainsi qu'à manipuler l'individu qui les portent dans ce sens, pour lequel il est plus favorable dans la majorité des cas de produire tout autant de mâles que de femelles. La notion de gène égoïste se rapproche en fait du concept de sélection de parentèle en cela que le gène qui dicte un acte altruiste au bénéfice d'un autre individu apparenté facilite en fait sa propre transmission.

Types de gènes et vocabulaire technique

Le terme de gène est tellement large qu'il est quelquefois complexe d'en donner une définition. De nombreux dérivés, au sens bien plus précis, et quelquefois technique, sont utilisés fréquemment dans le milieu scientifique.

  • Gène à action zygotique : gène qui ne s'exprime que chez le zygote et qui n'est pas une contribution maternelle à l'ovocyte.
  • Gène (s) activant la recombinaison (RAG)  : (RAG ; Recombination Activating Genes)  : ensemble de gènes codant des protéines qui jouent un rôle essentiel dans le réarrangement d'autres gènes. A titre d'exemple, les gènes RAG-1 et RAG-2 codent des protéines qui activent le réarrangement des gènes de récepteurs antigéniques.
  • Gène (s) à effet maternel : (Maternal-Effect Gene) gène à expression maternelle; gène maternel dont les produits d'expression dans le cytoplasme de l'ovule facilitent le développement du futur embryon ; ce gène contribue au phénotype du descendant selon son expression chez la mère.
  • Gène architecte : gène qui contrôle le développement embryonnaire.
  • Gène antisens : gène qui produit un ARNm complémentaire au transcrit d'un gène normal, le plus souvent construit en intervertissant la région codante comparé au promoteur.
  • Gène candidat : l'approche gène candidat consiste à supposer l'implication d'un gène dans un quelconque effet a priori, et l'étude vise à confirmer cette implication a posteriori.
  • Gène candidat positionnel : gène réputé pour être situé à proximité d'un marqueur d'ADN lié à un caractère contrôlé par un seul locus ou à un QTL (locus à effets quantitatifs), et dont la fonction déduite suggère qu'il peut être la source de la variation génétique du caractère en question.
  • Gène candidat positionnel par cartographie comparée : se réfère à un moyen indirect d'attribuer une fonction à un QTL. Quand un QTL est lié à un marqueur pour une espèce, et que ce même marqueur est lié à un gène connu dans une espèce modèle, des prédictions peuvent être faites concernant la nature du QTL.
  • Gène chimère ou gène de fusion : gène modifié génétiquement, obtenu quand une séquence codante est fusionnée avec un promoteur et/ou d'autres séquences dérivées d'un gène différent. La majorité des gènes utilisés dans la transformation sont chimériques.
  • Gène chimère marqueur de sélection : gène fabriqué à partir de morceaux de deux ou de plusieurs gènes différents et autorise la cellule hôte de survivre dans des conditions qui, autrement, entraîneraient sa mort.
  • Gène constitutif : gène qui est toujours exprimé (sans mécanisme de régulation)  ; c'est-à-dire un gène d'entretien (gène de ménage; gène domestique ou housekeeping gene) ; gène s'exprimant de la même manière dans l'ensemble des cellules d'un organisme ; le produit d'expression de ce gène est indispensable à la vie de la cellule (à son métabolisme de base). Fréquemment, ces gènes ne possèdent pas de boîte TATA.
  • Gène d'ancrage : gène qui a été situé sur la carte physique et la carte de liaison d'un chromosome, et donnant la possibilité ainsi leur alignement mutuel.
  • Gène d'avirulence ou gène avr : plusieurs plantes contiennent des gènes R qui confèrent une résistance à hérédité simple à une race spécifique de pathogène. Les plantes sont capables de reconnaître la présence du pathogène par une interaction entre leur gène R et le gène d'avirulence correspondant du pathogène. La reconnaissance réussie déclenche l'activation en cascade de nouveaux gènes, menant fréquemment à une réponse hypersensible.
  • Gène délétère : gène dont l'altération (suite à une mutation, par exemple) entraîne un problème au niveau de son expression, ce qui conduit à la naissance d'un caractère phénotypique anormal.
  • Gène d'histocompatibilité : ensemble de gènes qui codent les antigènes du Complexe Majeur d'Histocompatibilité (CMH).
  • Gène d'intérêt : (transgène)  : gène codant une protéine d'intérêt ; ce gène est introduit expérimentalement dans un organisme (qui devient un organisme génétiquement modifié ou OGM ou organisme transgénique) pour que ce dernier produise la protéine en question.
  • Gène de polarité segmentaire : gène qui fonctionne pour définir les composants antérieurs et postérieurs des segments du corps chez la Drosophile.
  • Gène des organites : gènes situés dans les organites en dehors du noyau.
  • Gène disrupteur : utilisé pour renforcer la stérilité des graines obtenues à partir des cultures génétiquement modifiées.
  • Gène fragmenté : chez les eucaryotes, l'ADN codant de plusieurs gènes structuraux se compose d'exons et d'introns. Ce modèle d'interruption le plus souvent trouvé dans la séquence codante est désigné sous le nom de «gène fragmenté».
  • Gène gus : gène d'E. coli qui code la bétaglucuronidase (GUS). Puisque cette activité est absente chez les plantes, ce gène est le plus souvent utilisé comme gène rapporteur pour détecter l'occurrence des évènements de transformation.
  • Gène hémizygote : gène qui n'est présent qu'en une seule copie dans un organisme diploïde (on peut citer comme exemple les gènes liés au chromosome X chez les mammifères de sexe mâle).
  • Gène immédiat précoce : gène viral exprimé immédiatement après l'infection.
  • Gène inductible : gène qui s'exprime seulement en présence d'un métabolite spécifique, l'inducteur.
  • Gène létal : forme mutante d'un gène, fatale à l'état homozygote.
  • Gène létal récessif : gène codant une protéine qui est indispensable pour le passage de l'organisme à l'état adulte. Si les deux allèles de ce gène sont présents à l'état récessif, le fœtus a des problèmes pour se développer ; il meurt à l'apparition ou peu après.
  • Gène lié ou marqueur lié : gène ou marqueur lié à un autre gène ou marqueur.
  • Gène marqueur : gène dont la fonction ou la position sont connues, utilisé dans la sélection assistée par marqueurs (SAM) ou dans les études génétiques.
  • Gène marqueur de résistance aux antibiotiques (ARMG pour antibiotic resistance marker gene)  : gènes le plus souvent d'origine bactérienne utilisés comme marqueurs de sélection en transgénèse, car leur présence permet la survie des cellules en présence d'agents antibiotiques normalement toxiques. Ces gènes étaient utilisés dans le développement et la libération de la première génération d'organismes transgéniques (spécifiquement chez les plantes cultivées), mais ils ne sont plus recommandés à cause des risques potentiels associés au transfert non désiré de la résistance aux antibiotiques à d'autres organismes.
  • Gène modificateur : gène qui affecte l'expression de certains autres gènes.
  • Gène mutable : gène qui a une fréquence de mutation exceptionnellement élevée.
  • Gène orphelin : gène ou séquence d'ADN dont la fonction n'est pas connue.
  • Gène par : classe de gènes nécessaires à la ségrégation fidèle du plasmide au cours de la division cellulaire. Originellement, les loci par étaient identifiés dans les plasmides, mais plus tard, ils ont été aussi trouvés dans les chromosomes bactériens.
  • Gène (s) paralogue (s)  : gènes ayant évolué à partir de la duplication d'un même gène de départ.
  • Gène polymorphe (polymorphic gene)  : gène existant sous plusieurs formes (différentes formes alléliques).
  • Gène rapporteur : gène codant une substance aisément analysable. Utilisé comme marqueur pour confirmer l'incorporation d'un transgène dans une cellule, un organe ou un tissu, et comme moyen d'examiner l'efficacité de promoteurs spécifiques.
  • Gène régulateur : gène dont la fonction primaire est de contrôler le taux de synthèse des produits d'un ou de plusieurs autres gènes ou voies.
  • Gène répressible : gène dont l'expression peut être réduite ou anéantie par la présence d'une molécule régulatrice.
  • Gène structural : gène codant un polypeptide qui possède des fonctions enzymatiques ou structurales et qui est indispensable pour le métabolisme normal et la croissance d'une cellule ou d'un organisme.
  • Gène suppresseur de tumeur : gène qui règle la croissance cellulaire. Si un tel gène devient non fonctionnel et la cellule subit une altération, alors une croissance non-contrôlée ou un cancer pourrait en résulter.
  • Gènes additifs : gènes dont l'effet net est la somme des effets de leurs allèles individuels, ils ne présentent ni dominance ni épistasie.
  • Gènes complémentaires : deux ou plusieurs gènes interdépendants, pour lesquels (dans le cas de complémentarité dominante) l'allèle dominant de l'un d'eux peut produire un effet sur le phénotype d'un organisme uniquement si l'allèle dominant du second gène est présent; dans le cas de complémentarité récessive, seuls les individus doubles homozygotes récessifs peuvent exprimer l'effet.
  • Gènes cytoplasmiques : gènes situés sur l'ADN en dehors du noyau, c'est-à-dire dans les plastes et les mitochondries.
  • Gènes de parité segmentaire : gène qui influence la formation des segments du corps chez la Drosophile.
  • Gènes empilés : se réfère à l'insertion de deux ou de plusieurs gènes dans le génome d'un organisme. Un exemple serait une plante portant un transgène Bt donnant la résistance à un insecte et un transgène bar donnant la résistance à un herbicide spécifique.
  • Gènes extranucléaires : gènes qui se trouvent ailleurs que dans le noyau (ex.  : dans les mitochondries, plastes).
  • Gènes homéotiques : gènes agissant en harmonie pour déterminer les modèles fondamentaux de développement. Les gènes homéotiques contrôlent le développement embryonnaire.
  • Gènes R : classe de gènes végétaux qui confèrent la résistance à une souche spécifique (ou à un ensemble de souches) d'un pathogène spécifique. Leur fonction primaire est de détecter la présence du pathogène et de déclencher les voies de défense de la plante. Des gènes R ont été clonés à partir d'un certain nombre d'espèces végétales.
  • Gènes rol : famille de gènes présents sur le plasmide Ri d'Agrobacterium rhizogenes, qui induisent la formation de racines quand ils sont transférés à une plante, suite à une infection par la bactérie. Ces gènes sont utilisés comme un moyen d'induction racinaire chez différentes espèces et cultivars d'arbres fruitiers micropropagés.
  • Gènes vir : ensemble de gènes sur un plasmide Ti ou Ri qui préparent le segment d'ADN-T pour le transfert dans une cellule végétale.
  • Pseudogènes : ensemble de gènes qui par suite de modification de sa séquence, ne peut plus être transcrit en ARN et/ou traduit en protéines. Ce sont des gènes non exprimés.
  • Gènes majeurs : Les gènes majeurs sont des gènes dont l'expression à un effet majeur sur le phénotype.
  • Gènes modulateur  :

Nomenclature de localisation d'un gène

  • La localisation d'un gène est fondée sur un modèle standard de bandes claires et sombres obtenues après application d'une technique de coloration.
  • Le gène est en premier lieu situé par le numéro du chromosome pour les chromosomes non sexuels (1 à 22 chez l'homme) et par une lettre pour les chromosomes sexuels.
  • Une lettre suit la désignation du chromosome, p (désignant le petit bras du chromosome) ou q (désignant le grand bras du chromosome).
  • La localisation est obtenue par les deux nombres suivants qui représentent la région et une bande. Plus le nombre indiquant la région est grand plus elle est éloignée du centromère (le point de rencontre des bras du chromosome).
  • Enfin il existe quelquefois un point suivi d'un ou deux chiffres représentant une sous-bande.

Cette nomenclature est utilisée essentiellement chez l'homme, mais pas seulement. Ainsi le gène ABO (responsable des groupes sanguins ABO) est en 9q34 chez l'homme et en 3p13 chez le surmulot.

Notes et références

  1. Mondial Human Genome Sequencing Consortium, 2004 : Finishing the euchromatic sequence of the human genome, Nature 431 : 931-945
  2. Michele Clamp, «Working the (Gene Count) Numbers_ Finally, a Firm Answer», dans Science, vol.  316, no 5828, 2007, p.  1113 [texte intégral]
  3. [http ://www. ensembl. org/Homo_sapiens/index. html Gènes humains sur Ensembl
  4. What is a gene ? Mark B. Gerstein et coll, Genome Research
  5. abcde "La régulation des gènes, moteur de l'évolution", Sean Carroll, Benjamin Prud'homme et Nicolas Gompel, Pour la Science, n°375, 01/2009, p48-59

Liens externes

Bibliographie

  • Le gène et la forme ou la démythification de l'ADN du Professeur Rosine Chandebois - Préface de René Thom - France - éd. Espaces 34 -
  • Génome : autobiographie de l'espèce humaine en vingt-trois chapitres, Matt Ridley - Robert Laffont.

Recherche sur Amazone (livres) :




Ce texte est issu de l'encyclopédie Wikipedia. Vous pouvez consulter sa version originale dans cette encyclopédie à l'adresse http://fr.wikipedia.org/wiki/G%C3%A8ne.
Voir la liste des contributeurs.
La version présentée ici à été extraite depuis cette source le 17/03/2009.
Ce texte est disponible sous les termes de la licence de documentation libre GNU (GFDL).
La liste des définitions proposées en tête de page est une sélection parmi les résultats obtenus à l'aide de la commande "define:" de Google.
Cette page fait partie du projet Wikibis.
Accueil Recherche Aller au contenuDébut page
ContactContact ImprimerImprimer liens d'évitement et raccourcis clavierAccessibilité
Aller au menu